Abstract
A two-component material (Fe3O4@CaSiO3) with an Fe3O4 magnetite core and layered porous CaSiO3 shell from calcium nitrate and sodium silicate was synthesized by precipitation. The structure, morphology, magnetic properties, and composition of the Fe3O4@CaSiO3 composite were characterized in detail, and its adsorption performance, adsorption kinetics, and recyclability for Cu2+, Ni2+, and Cr3+ adsorption were studied. The Fe3O4@CaSiO3 composite has a 2D core–layer architecture with a cotton-like morphology, specific surface area of 41.56 m2/g, pore size of 16 nm, and pore volume of 0.25 cm3/g. The measured magnetization saturation values of the magnetic composite were 57.1 emu/g. Data of the adsorption of Cu2+, Ni2+, and Cr3+ by Fe3O4@CaSiO3 fitted the Redlich–Peterson and pseudo-second-order models well, and all adsorption processes reached equilibrium within 150 min. The maximum adsorption capacities of Fe3O4@CaSiO3 toward Cu2+, Ni2+, and Cr3+ were 427.10, 391.59, and 371.39 mg/g at an initial concentration of 225 mg/L and a temperature of 293 K according to the fitted curve with the Redlich–Peterson model, respectively. All adsorption were spontaneous endothermic processes featuring an entropy increase, including physisorption, chemisorption, and ion exchange; among these process, chemisorption was the primary mechanism. Fe3O4@CaSiO3 exhibited excellent adsorption, regeneration, and magnetic separation performance, thereby demonstrating its potential applicability to removing heavy metal ions.
http://bit.ly/2MJDUzO
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου