Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τετάρτη 3 Μαΐου 2017

A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe

S09565663.gif

Publication date: 15 October 2017
Source:Biosensors and Bioelectronics, Volume 96
Author(s): Xiaojian Li, Yaoguang Wang, Li Shi, Hongmin Ma, Yong Zhang, Bin Du, Dan Wu, Qin Wei
An electrochemiluminescence (ECL) biosensor was developed for detection of Concanavalin A (Con A). Chitosan/Ru(bpy)32+/silica/Fe3O4 nanomaterials (CRuSi-Fe3O4) were synthesized through W/O microemulsion route. The added Fe3O4 nanoparticles can simplify the prepared process and enhance the conductivity of nanomaterials which can increase the ECL intensity of luminophor CRuSi-Fe3O4. In addition, the layered structure of CRuSi-Fe3O4 can immobilize lots of Con A using glutaraldehyde as the coupling agent which can improve the sensitivity of the biosensor. Then the quenching probe glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene (NiCo2S4-COOH-rGO@Glu) was anchored on the modified-electrode via the specific carbohydrate-Con A interaction. Here, NiCo2S4 was used to quench the ECL of CRuSi-Fe3O4, graphene was used to grow NiCo2S4 nanoparticles as carrier materials and glucose was served as the recognition element for bounding Con A. Therefore, a desirable quenching ECL signal was measured with S2O82- as the coreactant of CRuSi-Fe3O4. Under the optimization of determination conditions, a linear response range for Con A from 0.5pgmL−1 to 100ngmL−1 was obtained, and the detection limit was calculated to be 0.18pgmL−1 (S/N=3).



http://ift.tt/2oZhi5B

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου