Publication date: 2 May 2017
Source:Cell Reports, Volume 19, Issue 5
Author(s): Arata Furukawa, Kunihito Yoshikaie, Takaharu Mori, Hiroyuki Mori, Yusuke V. Morimoto, Yasunori Sugano, Shigehiro Iwaki, Tohru Minamino, Yuji Sugita, Yoshiki Tanaka, Tomoya Tsukazaki
Protein secretion mediated by SecYEG translocon and SecA ATPase is enhanced by membrane-embedded SecDF by using proton motive force. A previous structural study of SecDF indicated that it comprises 12 transmembrane helices that can conduct protons and three periplasmic domains, which form at least two characterized transition states, termed the F and I forms. We report the structures of full-length SecDF in I form at 2.6- to 2.8-Å resolution. The structures revealed that SecDF in I form can generate a tunnel that penetrates the transmembrane region and functions as a proton pathway regulated by a conserved Asp residue of the transmembrane region. In one crystal structure, periplasmic cavity interacts with a molecule, potentially polyethylene glycol, which may mimic a substrate peptide. This study provides structural insights into the Sec protein translocation that allows future analyses to develop a more detailed working model for SecDF.
Graphical abstract
Teaser
SecDF, a motor protein, uses proton motive force to facilitate bacterial protein translocation mediated by the SecYEG translocon and SecA ATPase. Furukawa et al. describe high-resolution (2.6–2.8 Å) structures of SecDF in I forms, providing insight into a substrate binding site and a proton transport pathway through SecDF.http://ift.tt/2p4XfxR
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου