Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
Hear Res. 2017 Jun 07;:
Authors: Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Röösli C, Sim JH, Huber A, Pfiffner F
Abstract
Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (PEC). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the PEC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices.
PMID: 28601531 [PubMed - as supplied by publisher]
http://ift.tt/2s1VJQr
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου