Abstract
In this work, visible light-responsive carbon nanotubes (CNTs)/Bi4VO8Cl composite photocatalysts have been prepared by a facile in situ hydrothermal method and characterized by various techniques. The photocatalytic properties of the photocatalysts are evaluated by the degradation of refractory azo-dye methyl orange (MO), hexavalent chromium Cr(VI), and bisphenol A (BPA) in water under visible light irradiation. It is found that the as-prepared composite with 4 wt% CNTs shows an optimal photocatalytic performance, and its photocatalytic activity is 30% higher than that of pure Bi4VO8Cl. The enhanced photocatalytic activity is ascribed to the synergetic effects induced by increased light absorption, increased adsorption efficiency for pollutant, and suppressed recombination rate of photogenerated charge carriers. Furthermore, efficient removals of Cr(VI), bisphenol A (BPA), and combined contamination of Cr(VI) and BPA over CNTs/Bi4VO8Cl composite further confirm that the degradation of organic pollutants is a photocatalytic mechanism rather than photosensitization of dye. Of particular importance is that removal efficiency of single pollutant can be promoted by the coexistence of the Cr(VI) and organics. The mechanism of synergetic promotion is discussed and attributed to the accelerated separation of charge carriers resulted from their simultaneously being captured by pollutants. Moreover, the CNTs/Bi4VO8Cl composite exhibits good stability and recycling performance in the photocatalytic degradation process. Therefore, the composite photocatalysts developed in the present work are expected to have the potential in purification of complex wastewater.
Graphical abstract
http://ift.tt/2g8T5qd
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου