Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 4 Αυγούστου 2017

Relationships between chewing rate, occlusion, cephalometric anatomy, muscle activity, and masticatory performance

S00039969.gif

Publication date: November 2017
Source:Archives of Oral Biology, Volume 83
Author(s): Brent A. Fulks, Kathryn X. Callaghan, Claire D. Tewksbury, Geoffrey E. Gerstner
ObjectiveMastication consists of rhythmic jaw openings and closings. Recent studies suggest that muscle mechanical properties determine the rhythmic rate; however, speed-accuracy tradeoffs may also play a role. This study evaluated how variation in chewing rate affected chewing performance, how masticatory muscle activity varied with chewing rate, and whether morphology and demographics contributed to performance.DesignChewing performance and muscle activity were sampled in 23 healthy, fully-dentate adults, who chewed a standardized test food to a metronome set at 0.5, 0.75, 1, 2 and 3 times their 'natural' chewing rates. Subjects produced ten chews per trial, and five trials for each of the five rates. Surface electromyographic (EMG) activity was sampled from masseter and temporalis muscles bilaterally. Demographic, occlusal, and cephalometric data were also obtained.ResultsChewing performance, defined by median particle size, was inversely related to chewing rate; however, performance was not remarkably improved at rates slower than the natural chewing rate. Above the natural chewing rate, variability in EMG bursts diminished, suggesting a reduction in muscle activity modulation at fast rates. Occlusal contacts and most morphological features appeared to play a limited or no role in performance.ConclusionsResults support the hypothesis that the 'natural' chewing rate is selected to be as fast as possible while providing sufficient time to allow EMG modulation for improved performance. The interplay between EMG modulation and individual variation in skeletal morphology is likely critical for optimal chewing performance.



http://ift.tt/2ua8CYW

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου