Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 30 Μαρτίου 2018

Mitochondria-homing peptide functionalized nanoparticles performing dual extracellular/intracellular roles to inhibit aminoglycosides induced ototoxicity.

Mitochondria-homing peptide functionalized nanoparticles performing dual extracellular/intracellular roles to inhibit aminoglycosides induced ototoxicity.

Artif Cells Nanomed Biotechnol. 2018 Mar 29;:1-10

Authors: Zhou S, Sun Y, Kuang X, Hou S, Wang Z, Qian Z, Liu H

Abstract
One of the major challenges in the treatment of hearing loss is the low efficacy of therapeutic candidates. To achieve the optimum drug efficacy, we designed a novel peptide (D-Arg-Dmt-Arg-Phe-NH2)-mediated mitochondrial targeted delivery nanosystem for a promising candidate, geranylgeranylacetone (GGA). The zebrafish lateral line system, a robust model for mammalian hair cells, was used to identify the efficacy against gentamicin, a well-known ototoxic agent. The nanosystem facilitated lysosomal escape and mitochondrial accumulation, and thus conferred superior protective efficacy against a wide range of gentamicin compared with unmodified NPs and free drugs. Meanwhile, peptides-modified NPs internalized hair cells via both of dynamin-dependent and independent routes, following a classic endocytic or autophagy pathway. Although extracellular action via MET channels, the primary protective mechanism underlying peptides-modified NPs was revealed due to their intracellular interaction. Thus, our nanoplatform provided a general strategy to enhance the clinical efficacy of a broad range of drugs in the treatment of hearing loss.

PMID: 29595337 [PubMed - as supplied by publisher]



https://ift.tt/2J62ZCT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου