Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 1 Μαΐου 2018

3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design

Publication date: 15 September 2018
Source:Journal of Colloid and Interface Science, Volume 526
Author(s): Shudi Zhi, Gang Wang, Zhixiang Zeng, Lijing Zhu, Zhixiong Liu, Dawei Zhang, Kaile Xu, Qunji Xue
The superamphiphobic surfaces with extreme repellency to liquids are very attractive in many fields, but their fabrication processes are always low effective and expensive. So it is still a challenge to create the superamphiphobic surfaces by simple, time saving and universal method. In this work, the mossy zinc (Zn) filaments, a promising re-entrant structure, was rapidly constructed on various metal surfaces by electrochemical deposition approach. After modification by 1H,1H,2H,2H- perfluorodecyltrichlorosilane (PFDTCS), the Zn@PFDTCS coating exhibited superamphiphobicity in air. The correlation between the morphology of Zn filaments and electrochemical deposition parameters has been studied. The superamphiphobic surface with contact angle higher than 154°, sliding angle lower than 5° and adhesive force lower than 0.043 mN to water and hexadecane was obtained, when the current density was 1.78 A ·dm−2, the mass fraction of zinc was 0.71 wt% and the deposition time was 40 min. Furthermore, the Zn@PFDTCS 2D-meshes were used to collect oil droplets under water and cut water droplet in oil due to their superoleophilicity under water and superhydrophobicity under oil. We anticipated that the simple and rapid method guides the design of perfect artificial superamphiphobic surfaces in practical application.

Graphical abstract

image


https://ift.tt/2w1TrWV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου