Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Παρασκευή 4 Μαΐου 2018

Effects of Cr 2 O 3 nanoparticles on the chlorophyll fluorescence and chloroplast ultrastructure of soybean ( Glycine max )

Abstract

Chromic oxide nanoparticles (Cr2O3 NPs) are widely used in commercial factories and can cause serious environmental problems. However, the mechanism behind Cr2O3 NP-induced phytotoxicity remains unknown. In this study, the effects of Cr2O3 NPs on the growth, chlorophyll fluorescence, SEM-EDS analysis, and chloroplast ultrastructure of soybean (Glycine max) were investigated to evaluate its phytotoxicity. The growth of soybean treated with various Cr2O3 NP suspensions (0.01, 0.05, 0.1, and 0.5 g L−1) was significantly inhibited. Specially, shoot and root biomass decreased by 9.9 and 46.3%, respectively. Besides, the maximum quantum yield of PSII (Fv/Fm) as well as the photochemical quenching (qP) decreased by 8–22 and 30–37%, respectively, indicating that the photosynthetic system was damaged when treated with Cr2O3 NPs. Moreover, the inhibition was confirmed by the reduction of Rubisco and MDH enzyme activity (by 54.5–86.4 and 26.7–96.5%, respectively). Overall, results indicated that the damage was caused by the destruction of chloroplast thylakoid structure, which subsequently reduced the photosynthetic rate. Our research suggests that Cr2O3 NPs can be transported and cause irreversible damage to soybean plants by inhibiting the activity of electron acceptors (NADP+) and destroying ultrastructure of chloroplasts, providing insights into plant toxicity issues.

Graphical abstract



https://ift.tt/2KA4w4O

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου