Abstract
Pyrrolizidine alkaloids (PAs) and related N-oxides (PANOs) are secondary plant metabolites thought to be found in approximately 3% of the flowering plants worldwide and exhibiting hepatotoxic properties to humans. As a consequence, beehive products are prone to be contaminated with those compounds by bees foraging PA-producing plants. Downstream contamination can also occur through food items containing honey. Analytical methods based on UHPLC separation and MS/MS detection were developed with a focus on very low LOQs and validated for the analysis of 16 PAs and 14 PANOs in honey, honey-based candies and snacks, as well as beehive product–based food supplements. A maximum level of 182 ng/g of PAs was detected in a Mediterranean honey, and high levels of heliotrine-type compounds were reported for the first time. An extensive sampling of honeys harvested in Belgium was performed (N = 374), the concentration levels were more limited with a maximum of 60 ng/g, and the contamination pattern was dominated by senecionine-type PAs. The PA levels in honey-based candies and snacks were very low, with respective maxima of 7.61 ng/g and 0.36 ng/g. Seventy-five percent among the pre-dosed food supplements based on beehive products were contaminated, with a maximum of 43 ng/g. The highest level was detected in a bee-collected pollen sample (1672 ng/g). The analytical results were consistent with the previously reported data for beehive products and confirmed that PA/PANO contamination in these food commodities is recurrent.
http://bit.ly/2U1AVFX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου