Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 20 Δεκεμβρίου 2016

Assessing genomic prediction accuracy for Holstein sires using bootstrap aggregation sampling and leave-one-out cross validation

1-s2.0-S0022030216X00252-cov150h.gif

Publication date: January 2017
Source:Journal of Dairy Science, Volume 100, Issue 1
Author(s): Ashley A. Mikshowsky, Daniel Gianola, Kent A. Weigel
Since the introduction of genome-enabled prediction for dairy cattle in 2009, genomic selection has markedly changed many aspects of the dairy genetics industry and enhanced the rate of response to selection for most economically important traits. Young dairy bulls are genotyped to obtain their genomic predicted transmitting ability (GPTA) and reliability (REL) values. These GPTA are a main factor in most purchasing, marketing, and culling decisions until bulls reach 5 yr of age and their milk-recorded offspring become available. At that time, daughter yield deviations (DYD) can be compared with the GPTA computed several years earlier. For most bulls, the DYD align well with the initial predictions. However, for some bulls, the difference between DYD and corresponding GPTA is quite large, and published REL are of limited value in identifying such bulls. A method of bootstrap aggregation sampling (bagging) using genomic BLUP (GBLUP) was applied to predict the GPTA of 2,963, 2,963, and 2,803 young Holstein bulls for protein yield, somatic cell score, and daughter pregnancy rate (DPR), respectively. For each trait, 50 bootstrap samples from a reference population comprising 2011 DYD of 8,610, 8,405, and 7,945 older Holstein bulls were used. Leave-one-out cross validation was also performed to assess prediction accuracy when removing specific bulls from the reference population. The main objectives of this study were (1) to assess the extent to which current REL values and alternative measures of variability, such as the bootstrap standard deviation (SD) of predictions, could detect bulls whose daughter performance deviates significantly from early genomic predictions, and (2) to identify factors associated with the reference population that inform about inaccurate genomic predictions. The SD of bootstrap predictions was a mildly useful metric for identifying bulls whose future daughter performance may deviate significantly from early GPTA for protein and DPR. Leave-one-out cross validation allowed us to identify groups of reference population bulls that were influential on other reference population bulls for protein yield and observe their effects on predictions of testing set bulls, as a whole and individually.



http://ift.tt/2iajCPF

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου