Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 14 Μαρτίου 2017

Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded

Publication date: 13 March 2017
Source:Developmental Cell, Volume 40, Issue 5
Author(s): Ting Su, Michael Z. Ludwig, Jiajie Xu, Richard G. Fehon
The Hippo pathway is emerging as a key evolutionarily conserved signaling mechanism that controls organ size. Three membrane-associated proteins, Kibra, Merlin, and Expanded, regulate pathway activity, but the precise molecular mechanism by which they function is still poorly understood. Here we provide evidence that Merlin and Kibra activate Hippo signaling in parallel to Expanded at a spatially distinct cellular domain, the medial apical cortex. Merlin and Kibra together recruit the adapter protein Salvador, which in turn recruits the core kinase Hippo. In addition, we show that Crumbs has a dual effect on Hippo signaling. Crumbs promotes the ability of Expanded to activate the pathway but also sequesters Kibra to downregulate Hippo signaling. Together, our findings elucidate the mechanism of Hippo pathway activation by Merlin and Kibra, identify a subcellular domain for Hippo pathway regulation, and demonstrate differential activity of upstream regulators in different subcellular domains.

Teaser

Merlin, Kibra, and Expanded are believed to act in a complex at intercellular junctions to control Hippo pathway activity. Su et al. show that instead Merlin and Kibra function at the Drosophila apical medial cortex separately from Crumbs and Expanded, thereby identifying an additional subcellular domain for Hippo pathway regulation.


http://ift.tt/2mF385t

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου