Abstract
The anatomical differences between the newborn ear and the adult one result in different input admittance responses in newborns than those in adults. Taking into account fluid-structure interactions, we have developed a finite-element model to investigate the wideband admittance responses of the ear canal and middle ear in newborns for frequencies up to 10 kHz. We have also performed admittance measurements on a group of 23 infants with ages between 14 and 28 days, for frequencies from 250 to 8000 Hz with 1/12-octave resolution. Sensitivity analyses of the model were performed to investigate the contributions of the ear canal and middle ear to the overall admittance responses, as well as the effects of the material parameters, measurement location and geometrical variability. The model was validated by comparison with our new data and with data from the literature. The model provides a quantitative understanding of the canal and middle-ear resonances around 500 and 1800 Hz, respectively, and also predicts the effects of the first resonance mode of the middle-ear cavity (around 6 kHz) as well as the first and second standing-wave modes in the ear canal (around 7.2 and 9.6 kHz, respectively), which may explain features seen in our high-frequency-resolution clinical measurements.
http://ift.tt/2uwCT7G
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου