Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Τρίτη 18 Ιουλίου 2017

Using computational theory to constrain statistical models of neural data

S09594388.gif

Publication date: October 2017
Source:Current Opinion in Neurobiology, Volume 46
Author(s): Scott W Linderman, Samuel J Gershman
Computational neuroscience is, to first order, dominated by two approaches: the 'bottom-up' approach, which searches for statistical patterns in large-scale neural recordings, and the 'top-down' approach, which begins with a theory of computation and considers plausible neural implementations. While this division is not clear-cut, we argue that these approaches should be much more intimately linked. From a Bayesian perspective, computational theories provide constrained prior distributions on neural data—albeit highly sophisticated ones. By connecting theory to observation via a probabilistic model, we provide the link necessary to test, evaluate, and revise our theories in a data-driven and statistically rigorous fashion. This review highlights examples of this theory-driven pipeline for neural data analysis in recent literature and illustrates it with a worked example based on the temporal difference learning model of dopamine.



http://ift.tt/2uHdOHF

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου