Publication date: 18 July 2017
Source:Immunity, Volume 47, Issue 1
Author(s): Francesca Di Cara, Avinash Sheshachalam, Nancy E. Braverman, Richard A. Rachubinski, Andrew J. Simmonds
The innate immune response is critical for animal homeostasis and is conserved from invertebrates to vertebrates. This response depends on specialized cells that recognize, internalize, and destroy microbial invaders through phagocytosis. This is coupled to autonomous or non-autonomous cellular signaling via reactive oxygen species (ROS) and cytokine production. Lipids are known signaling factors in this process, as the acute phase response of macrophages is accompanied by systemic lipid changes that help resolve inflammation. We found that peroxisomes, membrane-enclosed organelles central to lipid metabolism and ROS turnover, were necessary for the engulfment of bacteria by Drosophila and mouse macrophages. Peroxisomes were also required for resolution of bacterial infection through canonical innate immune signaling. Reduced peroxisome function impaired the turnover of the oxidative burst necessary to fight infection. This impaired response to bacterial challenge affected cell and organism survival and revealed a previously unknown requirement for peroxisomes in phagocytosis and innate immunity.
Graphical abstract
Teaser
Peroxisomes are organelles involved in lipid metabolism and reactive oxygen species turnover. Di Cara et al. now show that peroxisomes are required to resolve microbial infection by innate immunity. Peroxisomes assist in the progression of phagocytosis and activate innate immune signaling to promote survival in the face of microbial challenge.http://ift.tt/2uGWO4c
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου