Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Σάββατο 31 Μαρτίου 2018

Bernard Sachs Lecture of 2016: Timing in Morphogenesis and Genetic Gradients during Normal Development and in Malformations of the Nervous System

S08878994.gif

Publication date: Available online 30 March 2018
Source:Pediatric Neurology
Author(s): Harvey B. Sarnat
Nervous system development is quadradimensional. Both normal ontogenesis and developmental malformations are explained in the context of the 4th dimension, timing. Timing of the onset of either the genetic expression of a mutation or an epigenetic event that may be teratogenic is primordial in determining morphogenesis and the forms of malformations with their functional consequences. Multiple genotypes may cause similar phenotypes or a single genotype with different degrees of retained normal genetic expression may result in variable phenotypes. In this treatise, examples are presented of these principles, including both delayed and precocious maturation of processes such as synaptogenesis that may be out of synchrony with other simultaneous processes of neuronal maturation. In postzygotic somatic mosaicism, timing of onset determines not only the character but also the extent of a lesion; focal cortical dysplasia IIb and hemimegalencephaly are the same disease, both sharing activation of the mTOR pathway as the primary mechanism; the difference is timing of onset within the 33 mitotic cycles of the periventricular neuroepithelium. Genetic expression often follows gradients along the 3 axes of the neural tube. Defective gradients often can be identified by their morphological result without knowing the precise mutation. Upregulation in the vertical axis produces hyperplasia or duplication of either dorsal or ventral structures, whereas downregulation yields hypoplasia or fusion in the midline of bilateral structures. Disorders of segmentation or neuromere formation in the neural tube are increasingly recognized as another pathogenesis of cerebral dysgenesis. Our recent investigations show the participation of the U-fibre layer beneath FCD in epileptic networks because of neuronal dispersion with elaborate synaptic plexi and a barrier to deep heterotopia.



https://ift.tt/2uGqvTS

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου