Publication date: September 2018
Source: Archives of Oral Biology, Volume 93
Author(s): Yu Isobe, Katsu Takahashi, Honoka Kiso, Kazumasa Nakao, Masayuki Ikeno, Noriaki Koyama, Manabu Sugai, Akira Shimizu, Hironori Haga, Kazuhisa Bessho
Abstract
Objective
Fibrous dysplasia (FD) is a benign bone disease characterized by fibro-osseous lesions. FD is caused by somatic mutations in the gene, guanine nucleotide-binding protein, alpha stimulating activity polypeptide 1 (GNAS), which encodes the G protein subunit, Gsα. FD manifests early in life, but the growth of lesions usually ceases in adulthood. FD lesions often exhibit somatic mutation mosaicism. In this study, the relationship between lesion growth and mutation prevalence within a lesion was investigated.
Design
Lesions from five FD patients were characterized by radiographical, histological and immunohistochemical methods. To accurately calculate the prevalence of mutations within lesions, GNAS codon 201 in genomic DNA isolated from fresh surgical FD specimens was sequenced.
Results
Uniquely, a lesion in one 46-year-old patient was still growing, enabling simultaneous analysis of both stable-old and active-new FD lesions in the same patient. Immunohistochemical analysis indicated that a newer, proximal lesion was growing while an older, distal lesion was not. The mutation prevalence differed between these lesions; it was low in the old and high in the new lesion. Thus, the frequency of mutated cells had decreased in the older lesion.
Conclusions
This is the first direct evidence for the age-dependent demise of mutated cells in FD, helping to explain why FD lesion growth generally ceases in adulthood.
https://ift.tt/2KQkEit
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου