Σφακιανάκης Αλέξανδρος
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5 Άγιος Νικόλαος
Κρήτη 72100
00302841026182
00306932607174
alsfakia@gmail.com

Αρχειοθήκη ιστολογίου

! # Ola via Alexandros G.Sfakianakis on Inoreader

Η λίστα ιστολογίων μου

Πέμπτη 5 Ιουλίου 2018

Identification of major matrix metalloproteinase-20 proteolytic processing products of murine amelogenin and tyrosine-rich amelogenin peptide using a nuclear magnetic resonance spectroscopy based method

Publication date: September 2018

Source: Archives of Oral Biology, Volume 93

Author(s): Garry W. Buchko, Rajith Jayasinha Arachchige, Jinhui Tao, Barbara J. Tarasevich, Wendy J. Shaw

Abstract
Objective

The aim of this study was to identify major matrix metalloproteinase-20 (MMP20) proteolytic processing products of amelogenin over time and determine if the tyrosine-rich amelogenin peptide (TRAP) was a substrate of MMP20.

Design

Recombinant15N-labeled murine amelogenin and 13C,15N-labeled TRAP were incubated with MMP20 under conditions where amelogenin self-assembles into nanospheres. Digestion products were fractionated by reverse-phase high-performance liquid chromatography at various time points. Product identification took advantage of the intrinsic disorder property of amelogenin that results in little change to its fingerprint 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectrum in 2% acetic acid upon removing parts of the protein, allowing cleavage site identification by observing which amide cross peaks disappear.

Results

The primary product in five out of the six major reverse-phase high-performance liquid chromatography bands generated after a 24 h incubation of murine amelogenin with MMP20 were: S55-L163, P2-L147, P2-E162, P2-A167, and P2-R176. After 72 h these products were replaced with five major reverse-phase high-performance liquid chromatography bands containing: L46-A170, P2-S152, P2-F151, P2-W45, and short N-terminal peptides. TRAP was completely digested by MMP20 into multiple small peptides with the initial primary site of cleavage between S16 and Y17.

Conclusions

Identification of the major MMP20 proteolytic products of amelogenin confirm a dynamic process, with sites towards the C-terminus more rapidly attacked than sites near the N-terminus. This observation is consistent with nanosphere models where the C-terminus is exposed and the N-terminus more protected. One previously reported end-product of the MMP20 proteolytic processing of amelogenin, TRAP, is shown to be an in vitro substrate for MMP20.



https://ift.tt/2KQl88h

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου