Publication date: 1 December 2017
Source:Talanta, Volume 175
Author(s): Beatriz Pérez-Fernández, Daniel Martín-Yerga, Agustín Costa-García
In this work, a novel method for the galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes was developed. Nanoparticles of spherical morphology with sizes between 60 and 280nm were obtained. The electrocatalytic effect of these copper nanospheres towards the oxidation of different sugars was studied. Excellent analytical performance was obtained with the nanostructured sensor: low detection limits and wide linear ranges (1–10,000µM) were achieving for the different reducing sugars evaluated (glucose, fructose, arabinose, galactose, mannose, xylose) with very similar calibration slopes, which demonstrates the possibility of total sugar detection. The reproducibility of these sensors was 4.4% (intra-electrode) and 7.2% (inter-electrode). The stability of the nanostructured electrodes was at least 30 days, even using the same device on different days. Several real samples (honey, orange juice and normal and sugar-free soft drinks) were evaluated to study the reliability of the nanostructured sensor.
Graphical abstract
http://ift.tt/2uDb4e8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου